Code Samples
Python code snippets to carry out common operations on e6data
Best Practices
Environment Variables
Setting environment variables is encouraged over hardcoding authentication variables and cluster IPs. The following environment variables can be set:
HOST_NAME: IP address or hostname of the cluster to be used.
E6_USER: Email address of the user account running the queries.
E6_TOKEN: Access token generated by the user in the e6data Console.
HOST_NAME=os.getenv("HOST_NAME")
E6_USER=os.getenv("E6_USER")
E6_TOKEN = os.getenv("E6_TOKEN")
Usage:
from e6data_python_connector import Connection
Create Connection
Sample code for establishing a connection with an e6data cluster.
from e6data_python_connector import Connection
username = '<username>' # Your e6data Email ID.
password = '<password>' # Access Token generated in the e6data console.
host = '<host>' # IP address or hostname of the cluster to be used.
database = '<database>' # # Database to perform the query on.
port = 443 # Port of the e6data engine.
catalog_name = '<catalog_name>'
cluster_uuid = '<cluster_uuid>' # Specify cluster UUID on when secure=True
secure = True # Flag to use a secure channel for data transfer, default to False
conn = Connection(
host=host,
port=port,
username=username,
database=database,
password=password,
cluster_uuid=cluster_uuid,
secure=secure
)
Switch Database in an Existing Connection
database = '<new_database_name>' # Replace with the new database name
cursor = conn.cursor(database)
Perform Query & Get Results
This code executes a query and fetches all the results.
The cursor
supports fetchmany
and fetchone
methods.
query = 'SELECT * FROM <TABLE_NAME>' # Replace with the query.
cursor = conn.cursor(catalog_name=catalog_name)
query_id = cursor.execute(query) # The execute function returns a unique query ID, which can be use to abort the query.
all_records = cursor.fetchall()
for row in all_records:
print(row)
To get all the results:
records = cursor.fetchall()
To get only one result (first row):
record = cursor.fetchone()
To limit the number of results:
limit = 500
records = cursor.fetchmany(limit)
Code Hygiene
It is recommended to clear the cursor, close the cursor and close the connection after running a function as a best practice. This enhances performance by clearing old data from memory.
cursor.clear() # Not needed when aborting a query
cursor.close()
connection.close()
Get Row Count
This code executes a query and returns the number of rows in the result set.
Fetching rowcount
from queryplanner
is preferred over using fetchall
method.
def get_result_row_count(query,database,catalog_name):
connection = Connection(host= HOST_NAME,
port = 80,
username = E6_USER,
database = database,
password = E6_TOKEN)
cursor = connection.cursor(catalog_name=catalog_name, db_name=database)
query_id = cursor.execute(query)
records = cursor.fetchmany(10000)
query_planner = json.loads(cursor.explain_analyse())
row_count = cursor.rowcount
cursor.clear()
cursor.close()
connection.close()
return row_count
if __name__=="__main__":
get_result_row_count(<QUERY>,<DATABASE>,<CATALOG_NAME>)
Get Query Execution Plan
The following code runs a query and returns the execution plan generated for the query by the e6data engine.
The execution plan data will be returned as a JSON string and should be parsed as JSON data.
def get_query_planner(query,database,catalog_name):
connection = Connection(host= HOST_NAME,
port = 80,
username = E6_USER,
database = database,
password = E6_TOKEN)
cursor = connection.cursor(catalog_name=catalog_name, db_name=database)
query_id = cursor.execute(query)
records = cursor.fetchmany(10000)
query_planner=json.loads(cursor.explain_analyse())
cursor.clear()
cursor.close()
connection.close()
return query_planner
if __name__=="__main__":
get_query_planner(<QUERY>,<DATABASE>,<CATALOG_NAME>)
Abort a Query
The following code aborts a query, referenced by the input Query ID. Refer Get Query ID for information on obtaining the Query ID.
def cancel_query(query_id,database,catalog_name):
connection = Connection(host= HOST_NAME,
port = 80,
username = E6_USER,
database = database,
password = E6_TOKEN)
cursor = connection.cursor(catalog_name=catalog_name, db_name=database)
cursor.cancel(query_id)
cursor.close()
connection.close()
print("Query Cancelled")
if __name__=="__main__":
get_query_planner(<QUERY_ID>,<DATABASE>,<CATALOG_NAME>)
Get Query Time Metrics
The following code runs a query and returns:
amount of time taken to execute the query in seconds
amount of time the query spent in the queue awaiting execution in seconds
amount of time taken to parse the query in seconds
def get_e6_time_outputs(query,database,catalog_name):
connection = Connection(host= HOST_NAME,
port = 80,
username = E6_USER,
database = database,
password = E6_TOKEN)
cursor = conn.cursor(catalog_name)
query_id = cursor.execute(query) # execute function returns query id, can be use for aborting the query.
all_records = cursor.fetchall()
explain_response = cursor.explain_analyse()
query_planner = json.loads(explain_response.get('planner'))
execution_time = query_planner.get("total_query_time") # In milliseconds
queue_time = query_planner.get("executionQueueingTime") # In milliseconds
parsing_time = query_planner.get("parsingTime") # In milliseconds
row_count = cursor.rowcount
if __name__=="__main__":
get_e6_time_outputs(<QUERY>,<DATABASE>,<CATALOG_NAME>)
Get Query ID
This code executes a query and returns the query ID.
def get_query_id(query_id,database,catalog_name):
connection = Connection(host= HOST_NAME,
port = 80,
username = E6_USER,
database = database,
password = E6_TOKEN)
cursor = connection.cursor(catalog_name=catalog_name, db_name=database)
query_id = cursor.execute(query)
all_records = cursor.fetchall()
cursor.clear()
cursor.close()
connection.close()
return query_id
if __name__=="__main__":
e6x_query(<QUERY>,<DATABASE>)
Combine Multiple Functions
The following code is an example using multiple functions defined above to return:
Number of rows
The time taken to execute the query
Query results
from e6data_python_connector import Connection
import json
username = '<username>' # Your e6data Email ID.
password = '<password>' # Access Token generated in the e6data console.
host = '<host>' # IP address or hostname of the cluster to be used.
database = '<database>' # # Database to perform the query on.
port = 80 # Port of the e6data engine.
sql_query = 'SELECT * FROM <TABLE_NAME>' # Replace with the actual query.
catalog_name = '<catalog_name>' # Replace with the actual catalog name.
conn = Connection(
host=host,
port=port,
username=username,
database=database,
password=password
)
cursor = conn.cursor(db_name=database, catalog_name=catalog_name)
query_id = cursor.execute(sql_query)
all_records = cursor.fetchall()
explain_response = cursor.explain_analyse()
planner_result = json.loads(explain_response.get('planner'))
execution_time = planner_result.get("total_query_time") / 1000 # Converting into seconds.
row_count = cursor.rowcount
columns = [col[0] for col in cursor.description] # Get the column names and merge them with the results.
results = []
for row in all_records:
row = dict(zip(columns, row))
results.append(row)
print(row)
print('Total row count {}, Execution Time (seconds): {}'.format(row_count, execution_time))
cursor.clear()
cursor.close()
conn.close()
Auto Resume
To enable Auto Resume while establishing a connection using the Python Connector, set auto_resume=True in the connection configuration. This ensures that the cluster resumes automatically when a query is executed, eliminating the need for manual intervention.
conn = Connection(
host=host,
port=port,
username=username,
database=database,
password=password,
auto_resume=True
)
Last updated